
I/O Performance on the Connection Machine

DataVault System

John Krystynakl

Report RND-92-011 May 1992

NAS Systems Development Branch

NAS Systems Division

NASA Ames Research Center

Mail Stop 258-6

Moffett Field, CA 94035-1000

1 Computer Sciences Corporation, NASA Ames Research Center, Moffett Field, CA 94035-1000

I/O Performance on the Connection Machine DataVault

System

John Krystynak °

Computer Sciences Corporation

NASA Ames Research Center

Moffett Field, CA 94035

Abstract

This paper presents performance measurements of the Connection Machine Data Vault system.

The Data Vault is an I/0 system for mass storage. Theoretically, the Data Vault configuration

at NASA Ames Numerical Aerodynamic Simulation Facility is capable of transfer rates of 32
megabytcs/sec. The major limitation of the current Data Vault configuration is its inability to use
more than one CMIO bus to communicate between the Connection Machine and the Data Vault.

Overall however, the Data Vault is an effective I/O system. Performance statistics show that

actual Data Vault I/0 performance can be close to peak theoretical rates. 1/(9 system behavior

from CM Fortran and C/PARIS is described. Graphs of performance results are given, with

interpretation focusing on how to realize good CM 1/(9 system throughput.

1 Introduction

The Connection Machine (CM) I/0 system is comprised of the CM, the CM I/0 busses and

the DataVault. This system affects computational fluid dynamics (CFD) applications on the
CM since it is where data, grid and solution files are often stored. Because CFD applications

and other applications depend on the CM I/O system for mass storage, the performance of the

CM I/O system affects overall throughput of many codes. Therefore, it is important to have an
idea of I/O performance on the CM system.

Many factors influence DataVault I/O throughput. Some of these factors include: hardware

architecture of the system, software interface used, user load on the CM front-ends, and how

the system is used. In this paper, the examination is focused on the hardware performance
capabilities of the DataVault system. Basic tests are run on the DataVault to determine the

maximum performance given a fixed hardware configuration. No attempt is made to simulate

the I/O requirements of a CFD application.

The results presented in this paper are intended to verify and explain the behavior of the

CM, DataVault and the CM I/O busses. The results are relevant to application developers

for predicting and checking I/O performance. Other I/O hardware, such as the CM-HiPPI is

similarly affected by the performance of the I/O bnsses and CM, and some tests may be helpful
to users of such hardware.

The key sections of the investigation are:

• Explanation of the CM I/O and DataVault system configuration.

• Explanation of the performance tests.

*Work Supported by NASA Contract NAS 2-12961

• Performance results and graphs.

• Conclusions and summary.

2 CM I/O Configuration at NASA Ames

The layout of the CM I/O system determines the maximum I/O throughput which the CM
and DataVault can attain. The key components of the CM I/O system at the Numerical

Aerodynamic Simulation (NAS) Facility are as follows:

• 32,768 processor CM-2.

• 25 gigabyte DataVault.

• 2 32MB/sec CM I/O busses.

• 4 CM I/O Controllers (CMIOC).

The CM has four ports (CMIOCs) to the I/O busses, one for each sequencer. Each I/O bus is

attached to two ports. At NAS, the even-numbered sequencers are attached to CMIO bus #2,

the odd sequencers are attached to CMIO bus #1. The CMIO busses each support a maximum

transfer rate of 32MB/sec. The DataVault, however, can only interact with one CMIO bus at
a time. This means that the DataVanlt is limited to a maximum transfer rate of 32MB/sec. A

device which can interact with both busses would be capable of 64MB/sec. A striped I/O system

consisting of 2 or more DataVaults could use both busses for peak transfer rates of 64MB/sec.
A CM-HIPPI network device can also use more than one CMIO bus at a time. The architecture

of the current CM I/O system is illustrated in figure 1.

3 How the Performance Tests are Conducted

The purpose of the performance tests is to determine I/O performance characteristics of the

CM I/O system. The tests are not designed to simulate production codes.
There are two types of performance tests in this paper, slicewise (written in CM Fortran)

and fieldwise (in C/PARIS and CM Fortran). Slicewise programs view the CM architecture as
a collection of floating point units, each served by 32 CM processors. In slicewise execution, one

32-bit floating point number can be supplied to a floating point unit every clock cycle. A floating

point unit takes a 'slice' across 32 CM processors to form an operand each cycle. In fieldwise

mode, a floating point unit is supplied with 32 operands from 32 CM processors every 32 cycles,

with each CM processor delivering one bit per cycle. The term 'fieldwise' is derived from the

notion that each CM processor addresses a field of bits, in this case the 32 bits which form

single-precision real number. Slicewise format offers more floating point performance potential

than fieldwise format, but not necessarily more I/O throughput performance.

CM Fortran codes can be slicewise or fieldwise and employ the CM Fortran Utility library

to do I/O operations. Paris codes are fieldwise and employ the CM file system (CMFS) library,
which supports some advanced features such as buffered and stream I/O. The CM Fortran

Utility library does not support buffered or streaming I/O operations.

In all cases, the test programs open a file descriptor, write to the file, then read the file and

close it. The data read is compared to the written data for equivalency. CM reads and writes to

the DataVault conform to the shape of the CM geometry during the I/O operation. In all tests,

the geometry of the CM is 1-dimensional NEWS of N processors. Each test creates its own files

to ensure geometries of read and write files are equivalent to machine geometry. Unless noted

otherwise, results of tests are achieved with version 6.1 software. All CM Fortran tests were
conducted with CMSS version 6.1.

Timings are conducted usingthe CM timersoftwarefacilities.The CM timer routinesrecord

time elapsed and time busy. The former isthe wall clock time to execute the code between

the timerstartand timer stop,whilethe latteristhe time the CM itselfisbusy executing the

instructions.Calculationsforalltimingsand transferratesin thispaper use the elapsedtime.

Testsunder 6.1 containdata pointsfor4,194,304and 8,388,608virtualprocessors(VPs), while

testsunder 6.0 have a maximum of 2,097,152(VPs). The timings presented inthis paper are

averagesofseparate testruns. Tests were conducted at variouslevelsofsystem usage,ranging

from unloaded to heavilyloaded.

4 PARIS Performance Tests, Graphs and Conclusions

This section covers the methodology of the PARIS performance tests, the resulting perfor-

mance graphs and their interpretation. It is more extensive than the analogous CM Fortran

section primarily because PARIS and the CMFS library offer a richer set of routines for using

and investigating the CM I/O system.

4.1 PARIS Performance Tests

The PARIS tests have only one I/0 format, fieidwise, but the CMFS I/0 library contains

routines for doing several different types of I/O. The basic test concerns synchronous I/O on

the DataVault. The test program source lines which do the work are as follows:

#define CHAR 8

/* Write to DataVault */

CM_tiaer_cleaz(O);

CM_timer_start(O);

if ((i = CllFS_write_file_aleays(par_fd, temp. CHAR*nut_bytes)) < O)

CMFS_perror("erite error");

CM_timer_etop(O);

The callto CMFS_write__ile.always has each virtualprocessorwrite hum_bytes bytes.The

timersarewrapped around thiscall,so onlythe actualwriteistimed. The writeisa synchronous

I/O operation.The read callishandled exactlythe same as the write,except for the function

name, and a differentfiledescriptorin the call.

The above routineisan example ofsynchronous I/O on the DataVault. The other types of

I/O operations available on the DataVault are streaming I/O and buffered I/O. Streaming I/O
is beneficial for applications which can read or write a large amount of data, in an uninterrupted

stream. A streaming read attempts to keep the CMIOC's FIFO buffers full, until there is no

more data available for reading or writing. Streaming I/O is disabled when running under

timesharing. Streaming I/O is not tested in this paper, though performance characteristics of

streaming I/O may be estimated from the behavior of synchronous I/O. For more information

on streaming I/O, see [2].

Buffered I/O gives better results for repeated transfers of small amounts of data, which can

be buffered and transferred in larger chunks. The programmer designates a memory field to use

as the I/O buffer. The call to CRFS.buffered_mrite__ile always writes data to the memory

feld when space is available, and flushes the buffer to disk when necessary. Several tests are

conducted with buffered I/O to determine its efficiency. The buffered I/O test loop is shown
below.

#_LefJ.ne CHAR 8

/* Set the I/0 buffer size */

if (CMFS_setbu_er(par_fd, iobu_, buflen) < 0)

CMFS_perror("Write can'_ se_buffer");

/, Do buffered e rite _o DataVault */

CM_timer_clea_(O);

CM_tiner_star_(O);

for (times = O; times < buflen/(CHAR*nun_bytes); tines++)

if (CMFS_bu_fered_vrite_file_always(par_fd, temp, CHARenum_bytes) < O)

CMFS_perror("write error");

if (CMFS_flush(pax_fd) < 0)

CMFS_perror("Write can't flush buffer");

CM_timer_stop(O);

The Buffered I/O test repeatedly writes 4-bytes at a time to a buffer of 512-bytes, until the

buffer is furl. The ¢MFS..flush call guarantees that the buffer is fully written to disk before

stopping the CM timer.

4.2 PARIS Performance Graphs

The many graphs relating PARIS I/O performance are grouped for easy comparison. The

following sections describe the major groupings.

4.2.1 Comparison Between 8K, 16K, and 32K Processor Performance

The first set of graphs (figures 2 thru 9) is presented as a summary of overall performance.

These graphs compare the throughput of the I/0 system at the three possible machine sizes.

These graphs are semi-log plots with an x-axis range of 1,000 to 10,000,000 VPs. Their y-axes

range from 0 to 32 megabytes/sec, to cover the entire performance range theoretically possible

with the tested hardware configuration. The left-most point on each line graphed represents a
VP ratio of 1.

4.2.2 Buffered I/O Results

The next two graphs (figures 10 and 11) illustrate the performance of buffered I/O. The buffer

size is 512 bytes, and the tests do 128 consecutive reads/writes of 4 bytes/VP to the buffer. The
buffer is flushed when it is full or when a ClffS__lush is called. The flush in the test is redundant,

since the buffer should be flushed automatically after 128 reads/writes. The maximum speed
this test could achieve is bounded by the synchronous tests of 512-byte/VP reads/write, since

the flush operation is exactly a synchronous 512-byte/VP read/write.i These graphs are the

same format as the previous 8K, 16K, and 32K comparison graphs.

4.2.3 Performance Ranges for Individual Tests

The graphs devoted to a single machine size (figures 12 thru 17) report the time required to do a

specific operation. These graphs are limited to CMSS 6.1 results. For each machine size (8k, 16k,

32k), at least seven repetitions of the tests are run. The repetitions are run at various times so
that the state of the system ranges from quiescent to heavily loaded. The mean, maximum and

minimum times of the repetitious are plotted. This format illustrates the range of performance

values which may be expected in applications doing similar I/O operations. Only the graphs

of the running times for tests of 4-byte reads and writes are shown in the performance section

of this paper. The equivalent 512-byte graphs are uninteresting because the mean, maximum

Physical Proccessors A _ailable Ports

8,192 (Seqs 0,1,2,3) 1

16,384 (Seqs 0-1,2-3) 1

32,768 (Seqs 0-3) 2

Procs/Ports

8,192

16,384

16,384

Table I:Ratios ofphysicalprocessorsto CMIO bus ports for the attachablesizesof the CM-2.

and minimum times are indistinguishable,and the performance informationisthe same as that

presentedin figures 2 thru 5. The mean, rain and max linesforthe 512-byte cases coincide

because the startupcostsand latencyare small compared to the time forthe data transfer.

4.3 Conclusions - PARIS Tests

• Performance levelsfor I,2 and 4 sequencers.

The most obvious performance trend in the graphs which compare 8K, 16K and 32K

processortestsisthat the 8K sizesconsistentlyoutperform the 16K and 32K sizes.The

512-byteread and writecasesshow a disparityofup to 100% between 1 sequencer and 2

or more sequencers.In thesecases,there isa penalty forusing more processors.

The explanationforthistrend isthat each physicalprocessorin a VP-set doing an I/O

operation must communicate with the DataVault through the I/O ports connected to a

singleCMIO bus. When one sequencer iscommunicating, the ratioof physicalprocessors

to availableCMIO bus ports is8,192. When two sequencers (the sets 0-1 and 2-3 are

the two possiblesetsof 16K processors)are communicating with the I/O bus, only one

CMIO stationid isavailableon a given CMIO bus (seefigure I). The ratioof physical

processorsto availableCMIO bus ports is 16,384. For the 32k case,the possibleset of

sequencersis0-3,and thereare two stationidsavailableon one CMIO bus (infigure 1,

CMIO bus 1 isconnected to sequencers1 and 3,which are both inthe setof32K physical

processorsactive).The ratioof physicalprocessorsto availableCMIO bus ports isagain

16,384.Table 1 summarizes the possibleconfigurations.The ratiosexplainwhy the 8K

resultsare up to twice as fastas the 16K results,and why the 16K and 32K resultsare

nearlythe same.

• Differencein performance between CMSS 6.0 and CMSS 6.1.

The comparisons between the timingsdone under version6.0 and version6.1suggest that

optimizationsmade to improve throughput in version6.1 were successful.The most dra-

matic improvement isseen in the 4 byte write test,which was the leastefficientarea

under CMSS 6.0.Many ofthe 4-bytewrite data pointsindicatean improvement of 100%

in throughput. The 4-byte reads improved by 5%-10% depending on the VP ratioand

number of physicalprocessors.The 512-byte reads and writeshad lessroom for improve-

ment, sinceat higherVP ratios,thesetypesofoperationswere alreaayvery efficientunder

CMSS 6.0. For the most part,512-byte read/write improved slightly,except for the 512

byte writesbetween 32K VP and 256K VP which are slightlyslower (by lessthan 5%)

under 6.1 than they were under 6.0.

Overall,the improvements between CMSS 6.0 and CMSS 6.1 are significant,and the gains

in the 4-byte writesoffsetthe partialdeteriorationof the 512-byte writecases.

• Efficiencyof BufferedI/O performance.

The buffered I/O scheme isa usefulalternativeto writingsmall amounts of data at a

time. The bufferedI/O performance isvery closeto non-bufferedI/O performance of the

512-byte tests,which was the sizededicated to the I/O buffer.Comparing the figuresfor

the 512-byte unbufferedwrites(figure2),the 4-byteunbufferedwrites(figure6) and the

5

buffered writes (figure 10) shows that the buffered writes are 2 to 3 times faster than
the unbuffered 4-byte writes. Similarly, the buffered reads are faster than the unbuffered

4-byte reads, and slightly slower than the unbuffered 512-byte reads.

s Differences between 4-byte and 512-byte reads and writes.

The disparity between transfer rate of small (4-byte/VP) reads/writes and large (512-

byte/VP) reads/writes can be quite large (up to 20MB/sec). The 4-byte read/write is an

approximate measure of DataVanlt startup and overhead costs, since it is near the smallest
amount of data which can be transferred. In the 4-byte cases, there are fluctuations

between the mean, min and max, whereas the 512-byte cases do not have these fluctuations.

The time to read/write the data for the 512-byte cases dominates factors such as disk head

positioning and seek time, minimizing the presence of these costs in the graphs.

• Behavior of I/O at a wide-range of virtual processor ratios.

Overall, the I/O operations perform in an acceptable range for 4-byte and 512-byte sizes,
for all VP ratios. For a constant number of physical processors, the CM I/O system is

most efficient when it does the read/write at a high VP ratio. Under CMSS 6.1, at a VP

ratio greater than 2, increasing the VP ratio results in a higher throughput. Throughput

above 20MB/sec for read and writes is available at VP ratios above 8 when using either

buffered or synchronous 512-byte reads/writes.

• Consistency of performance between sequencers.

The performance of sequencers on CMIO bus 1 is no different from the performance of

sequencers on CMIO bus 2. To prove this, a series of tests are run on sequencer 2 and

sequencer 1. The mean difference between times on sequencer 1 and sequencer 2 for a

given VP ratio is leas than 0.01 secs. These tests indicate that the performance of the
two CMIO busses is essentially identical, and there is no tangible performance difference

between equal size processor sets.

5 CM Fortran Performance Tests, Graphs and Conclusions

The first two parts of this section explain the CM Fortran I/O tests, and discuss the perfor-

mance graphs. The third part presents conclusions on CM Fortran's I/O facilities.

5.1 CM Fortran Performance Tests

The I/O tests in Fortran are compiled for slicewise execution, since this is how CM Fortran
codes achieve the best computational performance. The two types of storage format available

under CM Fortran Release 1.1 are slicewise format and fieldwise format. The emphasis of the

CM Fortran tests is to check that the DataVanlt can be effectively used from slicewise mode.

As a comparison, however, tests are also run from slicewise Fortran using fieldwise I/0 format.

Fieldwise uses the same storage format as the PARIS based I/O, and requires transposing to

be compatible with slicewise Fortran executables. Therefore, fieldwise I/O is expected to be less

efficient than slicewise I/O when compiled under slicewise mode. Table 2 shows the naming

differences between slicewise (..fas) and fieldwise I/O operations. For more information on the

CM Fortran Utility library I/O calls, see [1].

5.2 Graphs of Performance Results - CM Fortran Tests

The four graphs in this section cover CM Fortran I/O throughput under slicewise-compiled
mode. The first two graphs, figures 18 and 19 show the range of performance using the CM

Fortran Utility library FMS I/O calls. These calls write/read the data in the slicewise format.

6

Operation Slicewise Fieldwise

READ CMF.array_f rom__ ile __ms CMF_array_/rom_file

WRITE CNF_array_toJile_fms CMF_array_to_/ile

Open File CMF_2ile_open CHF_ile_open

Table 2: Comparison of slicewise and fieldwise operations in the CM Fortran utility library.

The next two graphs, figures 20 and 21 show the performance for writing and reading using
the fieldwise format I/O calls (see table 2).

Figure 18 shows that I/O rates above 10MB/sec are most easily obtainable when more

than 10 megabytes are being written. Notice the steep increase in throughput between the 1

megabyte and 10 megabyte sizes, for all sequencer sets. This indicates that the total amount of

data transferred is more influential than data per processor in determining throughput. The 8k
performance line in fgure 18 shows that writes of sizes less than 8MB resulted in transfer rates

under 7 MB/sec. The 16k cases achieved better than 7MB/sec at all sizes above 1MB, with the

peak rates near 20MB/sec for 8MB and above. The 32K cases were about 6MB/sec slower than
the 16K sizes at all points above 128K.

The corresponding read performance, illustrated in figure 19 shows characteristics similar to

the write performance, with the steep change shifted to the 100Kbyte and 1 Mbyte range. In

the read statistics, however, all three sequencer sizes display relatively close levels of throughput
at the various transfer sizes, whereas the write performance is more dispersed. At sizes above

128K the read transfer rates were above 15MB/sec for all three configurations: 8K, 16K and

32k. The 16K and 32K sizes peaked near 20MB/sec for reads larger than 8MB, while the 8k

cases reached 25MB/sec for large reads. One explanation for the difference in performance at
the top range on both the write and read graph is described in detail under the section: PARIS

Performance levels for 1,2 and 4 sequencers.

The fieldwise graphs, figures 20 and 21, show that fieldwise performance is rather dismal

under slicewise mode. When transferring over 128 Kbytes of data, the CMFS fieldwise I/O calls
are at least 3 times slower than the comparable slicewise operations under slicewise CM Fortran.

This is attributable to the transposing and data manipulation required to put slicewise data into

fieldwise format. For a given size, the transposing to fieidwise format takes approximately twice

as long as the I/O operation. For writes in fieldwise format, performance is never better than

4MB/sec for any size test. For reads, performance reaches nearly 7MB/sec for 1MB reads with
32K processors, but tails off for the next larger size.

5.3 Conclusions - CM Fortran Tests

There are several conclusions relevant to CM Fortran users which can be drawn from tile CM

Fortran I/O performance graphs. These conclusions and the differences and similarities between

CM Fortran performance and PARIS performance are discussed in the following list.

• Slicewise users should use FMS calls.

Comparing the slicewise write and read graphs (figs. 18 and 19) to the fleldwise graphs
(figs. 20 and 21) shows that the FMS slicewise I/O calls are slightly more efficient for

small arrays, and much faster on larger arrays (sizes greater than 1Mbyte). The fieldwise

calls generally run out of memory for arrays larger than 10Mbytes which makes comparison

above that level impossible. In any case, slicewise CM Fortran I/O users should use the
FMS calls whenever compatibility with fieldwise format is not needed.

• CM Fortran I/O Performance is satisfactory for large arrays.

For arrays larger than 1 million floating point elements, CM Fortran I/O performance

is generally good. For write operations, one may expect 5-20 MB/sec throughput. For

readoperations,15-25MB/secthroughputis obtainable on all different sequencer sets.

Generally, it is not efficient to write/read arrays smaller than 1 million single-precision

floating point elements in slicewise mode. Note that the CM Fortran Utility library does
not provide for buffered I/O or streaming I/O, as is possible in PARIS. The CMFS I/O

calls could be called from Fortran for this functionality, but the performance would be

hampered by the fieldwise nature of these routines.

Differences in I/O behavior between CM Fortran and PARIS

CM Fortran never reaches the 30 MB/sec and above levels obtainable with large PARIS-

based transfers. The difference in efficiency between PARIS and CM Fortran is most likely

attributable to the format differences, and the fact that the DataVanlt and CMIO systems

were originally designed for fieldwise data. One advantage CM Fortran has over PARIS is

that the throughput rates remain relatively close for all sequencers at the higher transfer
sizes i.e. CM Fortran is more consistent than PARIS for different sequencer sizes.

Similarities in I/O behavior between CM Fortran and PARIS

Several of the conclusions of the PARIS section above also apply to the CM Fortran I/O

behavior of the CM. The PARIS tests are more extensive, and the behavior is examined

more closely below. Some examples of behavior which is safe to extrapolate to CM Fortran

I/O are: consistency of performance between sequencers; behavior of I/O at a wide-range

of virtual processor (VP) ratios (array sizes); and the basic explanation of throughput rate
levels for 1, 2 and 4 sequencers.

6 Summary

Performance of I/O on parallel supercomputers is a key component of overall performance
and usability of supercomputer applications. The Connection Machine DataVanlt I/O system

is designed for peak transfer rates of 32MB/sec. The major limitation of the current DataVau]t

configuration is its inability to use more than one CMIO bus to communicate between the
CM and the DataVanlt. This often means that problems running on 2 or more sequencers

of the DataVault will have a hard time duplicating the throughput rates of problems which

run on 1 sequencer because the ratio of processors to CMIO bus connections limits efficiency

on larger machine sizes. The actual performance of basic DataVault operations is close to

peak performance rates. CM Fortran provides a basic set of I/O routines which can achieve
performance in the 10-20 MB/sec range for arrays larger than 1 million single-precision floating

point elements. In PARIS, at high VP ratios, performance rates between 20-30MB/sec can be

expected. Overall, the DataVault is an effective I/O system that facilitates application control

of I/O operations from the Connection Machine.

References

[1] Thinking Machines Corp. CM Fortran User's Guide Version 1.0, Appendix A. Cambridge,

Mass., February 1991.

[2] Thinking Machines Corp. Connection Machine I/0 System Programming Guide Version

6.1, Chap 3. Cambridge, Mass., October 1991.

8

I I

I I
I I
II

Front I
End

CMIO Bus 2

1 2

Seq 0 Seq 2

Seq 1 Seq 3

1

CMIO Bus I

station id

CM-2

2 station id

Port

Port

DataVault

m, I

I
I
I
t
I
I
I
I

DataVault
Host

Figure 1: Basic architecture of CM I/O system. Two 32 MB/sec busses connect the sequencers

of the CM to the ports of the DataVault. The two busses allow every sequencer to access the

DataVault. Only one of the ports of the DataVault may be active at a time, so the maximum

rate the DataVault may receive data is 32 MB/sec. Ethernet connections are represented with

dashed lines. This figure is based on a configuration drawing by Mike Melendez of Thinking

Machines Corp.

ea

xlO 7

3

2.5

1.5

0.5

Transfer Rate of 512 Byte/VP Writes - Ver. 6.1

• . A.- " " " "

2_

÷ x o"

x

1o,
Virtual Processor=

Figure 2: Version 6.1 PARIS transfer rates of writing 512-bytes per virtual processor for 8,192,

16,384 and 32,768 physical processors.

xlO 7

3

2.5

1.5

0.5

0
103

Transfer Rates of 512 Byte/VP Write - Ver. 6.0

............... ii5104 I06 107

Virtual Processors

Figure 3: Version 6.0 PARIS transfer rates of writing 512-bytes per virtual processor for 8,192,
16,384 and 32,768 physical processors. Except for the 8K tests between 32,768 and 256K VPs,

performance under 6.0 is slightly slower than under 6.1.

m

xl07

3

2.5

1.5

O_5

0
]03

Transfer Rate of 512 Byte/VP Reads - Vet. 6.1

8k

• 16ka z

32k

............... i_iNIO a 107

Virtual Procem_m

Figure 4: Version 6.1 PARIS transfer rates of reading 512-bytes per virtual processor for 8,192,

16,384 and 32,768 physical processors.

10

tz_

xlOV

3

2.5

1.5

0_5

Transfer Rates of 512 Byte/VP Reads - Ver. 6.0
, , , ,,,,

8k

r . z • •

_(. . _.. - - . .4. ÷-

_- + " " 32k

0 J , J : , , ,,i , * , i lllt: i : i , i a J_ i i , , I _,

103 104 105 106 10'7

Virtual Processors

Figure 5: Version 6.0 PARIS transfer rates of reading 512-bytes per virtual processor for 8,192,

16,384 and 32,768 physical processors. Version 6.1 transfer _ates are about 1-2 MB/sec faster
than these in each case.

xlO 7 Transfer Rate of 4 Byte/VP Writes - Ver. 6.1
, • , , , ,,, , , , , , ,,,

3

2.5

1.5

O.5

0 ' ' ' ' ' '

_os io,
_ 4r "''''''°'4B '']_'_' "

lOS 10 6 10 7

Virtual Processors

Figure 6: Version 6.1 PARIS transfer rates of writing 4-bytes per virtual processor for 8,192,
16,384 and 32,768 physical processors.

11

a_

xl0 7 Tran_er Rmei of 4 Byte/VP Write - Ver. 6.0

3

2.5

1.5

0.5

O i I I I I i _'' _- '

10 3 10 4

8k

16k. 32k

, , , i I ii

105 IlY S 107

Virtual Processors

Figure 7: Version 6.0 PARIS transfer rates of writing 4-bytes per virtual processor for 8,192,

16,384 and 32,768 physical processors.

t

an

xlO 7

3

2.5

1.5

O.5

0
103

Trangfer Rate of 4 Byte/YP Beads - Ver. 6.1

10 4 l0 s 10 6 107

Virtual Processors

Figure 8: Version 6.1 PARIS transfer rates of reading 4-bytes per virtual processor for 8,192,
16,384 and 32,768 physical processors.

12

xlO 7

3

1.5

0.5

0
103

Transfer Rates of 4 Byte/VP Reads - Ver. 6.0

8k

104 10 s 106 10 _

Virtual Processors

Figure 9: Version 6.0 PARIS transfer rates of reading 4-bytes per virtual processor for 8,192,
16,384 and 32,768 physical processors.

x 10 7 Transfer Rate of Buffered Writes - Vet. 6.1

, , , ,,

3

2.5

2

1.5

O..5

0
IO s

• .

I0 4 I0 6 10 7

Virtual Proc._mrs

Figure 10: Buffered writes Version 6.1 (PARIS). Each buffer is 512-bytes.

13

xlO _

3

2.5

1.5

0.5

0
I0 3

Transfer Rate of Buffered Reads - Ver. 6.1

x +,,I- ÷ " " " _"+

31/_" " •

Z
Virtual Processors

Figure 11: Buffered Reads Version 6.1 (PARIS). Buffer size is 512-bytes. Performance is close
to that of 512-byte unbuffered reads under version 6.1 of CM system software.

14

2.4

1.s_-

1.6

1.4

1.2

1

0.8

0.6

0.4
103

Time to Write 4 Byteg/VP - Seq 2, ver. 6.1

...... i.

i'

i f

10 4 10 5 10 6 10 ?

Virtual _rs

Figure 12: Transfer rate of 4-byte/VP writes on 1 sequencer, using CM system software version
6.1 PARIS. The solid line is mean time of 7 runs, with the upper and lower dashed lines being
max and min times, respectively

9

8

7

6

g
•| 4
[,,.,

3

2

1

0

Time to Write 4 Bytes/VP - Seqs 0-I, vet. 6.1

i

/

: ," s'"

....... I0 ?

V'n.tual Processors

Figure 13: Transfer rate of 4-byte/VP writes on 2 sequencers, using CM system software version
6.1 PARIS. The solid line is mean time of 7 runs, with the upper and lower dashed lines being
max and rain times, respectively

15

3.2
Time to Write 4 ByU_/VP - Seqs 0-3, ver. 6.1

[-,

3

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2
104

t

sli
1_ 106 107

Virtual Processors

Figure 14: Transfer rate of 4-byte/VP writes on 4 sequencers, using CM system software version
6.1 PARIS. The solid line is mean time of 7 runs, with the upper and lower dashed lines being

max and min times, respectively

1.4

1.2

0.8

0.6

0.4

O.2

0
103

Time to Read 4 Byteg/VP - Seq 2, ver. 6.1

10 4 10 s 10 6 10 _

Virtual Processors

Figure 15: Transfer rate of 4-byte/VP reads on 1 sequencers, using CM system software version

6.1 PARIS. The solid line is mean time of 7 runs, with the upper and lower dashed lines being

max and rain times, respectively

16

[..

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
10 4

Time to Read 4 Byte_VP - Seqs 0-1, ver. 6.1
....... , , , , , , , , , ,

..............
' ' ' ' ' ' ' ' ' ' ' ' ' ' 'I''0 6 , t t I I , I ,lO s 10 ?

VirtuM Processors

Figure 16: Transfer rate of 4-byte/VP reads on 2 sequencers, using CM system software version

6.1 PARIS. The solid line is mean time of 7 runs, with the upper and lower dashed lines being
max and rain times, respectively

[..

Time to Write 4 Bytc_VP - Seqs 0-3, vet. 6.1
3.2

3

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2
104

i " / J

/ , / :
i L . e

; _ ' {

y 'b / ,'

y' ,. ,, ;'

: _ • /

t _. / •

fJ

10 5 10 e 10 7

Virtual Processors

Figure IT: Transfer rate of 4-byte/VP reads on 4 sequencers, using CM system software version

6.1 PARIS. The solid line is mean time of 7 runs, with the upper and lower dashed lines being
max and rain times, respectively

17

3O

25

2O

15

10

ClVl Fortran Slicewise Write Throughput

0 i i A i Ll,,±

I0 3 10 4 IO s

8k

x X+.

lO s 10 6 10 7

Bytes

Figure 18: Transfer rates of writes, using slicewise FMS CM Fortran Utility library. Rates are

shown for each of the three possible sequencer set sizes. The x-axis represents the size in bytes

of the array written to the DataVanlt. Sizes range from 10Kbytes to 64Mbytes

3O

25

2O

15

10

0
10 3

ClVl Fomlm Slicewise Read Throughput

k

• ax z

._.. 4-÷ .-4- -- -4-

3_1c

X

IO 4 lO s 106 IO ? I0 e

Bytes

Figure 19: Transfer rates of reads, using slicewise FMS CM Fortran Utility library. Rates are
shown for each of the three possible sequencer set sizes. Total read sizes range from 10Kbytes

to 64Mbytes

18

a3

3O

25

2O

15

10

103 104

CM Fortran Fieldwise Write Throughput

32k

......... " " " : ' _k

10 s 106 107 lO s

Bytes

Figure 20: CM Fortran transfers rates of fieldwise writes, compiled in slicewise mode. Write

sizes ranging from 1Kbytes to 10Mbytes are shown.

3O

25

2O

15

10

0
IO 3

CM Fore-an Fieldwise Read Throughput

32k

.o- *-- .._.

oO°" -

I0 4 l0 s I0 e 10 7 lO s

Bytes

Figure 21: CM Fortran transfers rates of fieldwise reads, compiled in slicewise mode. Read sizes

ranging from 1Kbytes to 10Mbytes are shown.

19

